
基于神经符号 AI 的  

机器人拆解智能化技术路线图  

3.0 

 
 

 

神经符号 AI，赋能绿色制造的人工智能引擎  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

神经符号 AI 社区  

2025 年 9 月  

 

  

人
工
智
能
产
业
链
联
盟



人
工
智
能
产
业
链
联
盟



 

 

目 录 

 

目 录......................................................................................................................................... 2 

名词解释 ................................................................................................................................... 1 

绿色制造 Green manufacturing ........................................................................................ 1 

可信人工智能 Trusted artificial intelligence .................................................................... 1 

神经符号人工智能 Neural symbolic AI .......................................................................... 1 

神经谓词 Neural predicate ............................................................................................... 1 

动作原语 Action primitive ............................................................................................... 1 

自主敏捷 Autonomy & agility ......................................................................................... 2 

大语言模型（LLM）Large Language Model ................................................................. 2 

视觉-语言模型（VLM）Vision-Language Model .......................................................... 2 

视觉-语言-动作模型（VLA）Vision-Language-Action Model ..................................... 2 

一、背景和意义 ....................................................................................................................... 3 

二、面向智能拆解的神经符号 AI 架构 ................................................................................. 8 

2.1 神经符号 AI 架构....................................................................................................... 9 

2.2 基于神经符号 AI 的机器人可微分任务和运动规划框架 ..................................... 10 

2.3 基于神经符号 AI 的机器人具身智能控制架构 ..................................................... 11 

2.4 神经符号具身智能更广阔的应用场景 ................................................................... 12 

三、路线图 2.0 的实施进展 .................................................................................................. 15 

四、基于神经符号 AI 的机器人拆解智能化技术路线图 3.0 ............................................. 17 

4.1 发展目标（3.0） ...................................................................................................... 17 

4.2 基本策略 ................................................................................................................... 17 

4.3 基于神经符号 AI 的机器人拆解智能化关键技术——感知 ................................. 22 

4.4 基于神经符号 AI 的机器人拆解智能化关键技术——决策 ................................. 24 

4.5 基于神经符号 AI 的机器人拆解智能化关键技术——控制 ................................. 26 

4.6 基于神经符号 AI 的机器人拆解智能化关键技术——学习 ................................. 28 

4.7 基于神经符号 AI 的机器人拆解智能化关键技术——执行本体与 CPS ............. 29 

4.8 保障措施 ................................................................................................................... 33 

 

 

人
工
智
能
产
业
链
联
盟



 

1 

 

名词解释 

绿色制造 Green manufacturing 

一种低消耗、低排放、高效率、高效益的现代化制造模式。 

其本质是制造业发展过程中统筹考虑产业结构、能源资源、生态环境、健康

安全、气候变化等因素，将绿色发展理念和管理要求贯穿于产品全生命周期中，

以制造模式的深度变革推动传统产业绿色转型升级，引领新兴产业绿色发展，协

同推进降碳、减污、扩绿、增长，从而实现经济效益、生态效益、社会效益协调

优化。 

可信人工智能 Trusted artificial intelligence 

像人类一样处理现实世界的问题而不会带来伤害的程序或系统。包含了人类

福祉、安全公平、可解释、可问责、隐私保护等多个维度。通过价值对齐，实现

人类的价值判断，成为可信人工智能。 

神经符号人工智能 Neural symbolic AI 

一种结合逻辑符号推理和神经网络概率学习的人工智能方法。 

通过融合符号逻辑系统的推理能力和神经网络系统的感知、学习能力，形成

感知、学习、决策、控制“知行合一”，训练与推理“训推一体”，可解释、可追溯

“可信具身”的机器人具身智能控制架构，具备自主性、可解释、可学习、可扩

展的特征与优势。 

神经谓词 Neural predicate 

既是符号逻辑系统中的谓词，也是一个概率神经网络。 

视觉、力觉、触觉等多模态信息和连续高维空间状态，经过神经网络的映射，

得到逻辑推理所需的符号状态，直接驱动动作原语，避免了定义复杂的逻辑规则。 

动作原语 Action primitive 

是机器人任务规划问题中联系逻辑规划与机器人真实运动之间的桥梁。由若
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干条指令组成，用来实现某个特定的操作，通过一段不可分割的或不可中断的程

序实现其功能，也可以通过 VLA（视觉-语言-动作模型）等神经网络实现。 

通过规划域定义语言，在逻辑规划空间中准确描述每个动作以及每个动作执

行所需要的前提条件、执行动作后的状态、系统的初始状和目标状态。基于该描

述，规划器在逻辑规划空间中通过推理，找出从目标状态到初始状态的动作原语

序列，形成执行规划。 

自主敏捷 Autonomy & agility 

具身智能机器人的适应性和工作效率属性，是指复杂和动态环境中的机器人，

在没有或最少人类干预的情况下，能够快速、灵活、高效地执行任务的能力。 

人类思维分为系统 1（快思考）和系统 2（慢思考），前者负责快速直觉决策，

后者处理需深思熟虑的决策。大脑高效运作依赖于大部分时间调度系统 1，仅少

数任务需系统 2。具身智能主要通过大模型主导的思维推理能力来模仿系统 2，

但感知到行动的映射同样需要建立一个模仿系统 1 的直觉控制。尽管已经有世界

模型、扩散策略脑神经科学等研究，但构建感知与行为关联的自主敏捷控制仍未

完全解决。 

大语言模型（LLM）Large Language Model 

专注于文本的超大参数量语言模型，通过海量文本数据训练，擅长理解和生

成自然语言。 

视觉-语言模型（VLM）Vision-Language Model 

融合视觉（图像/视频）和语言的多模态模型，能理解图像内容并与文本交

互。 

视觉-语言-动作模型（VLA）Vision-Language-Action Model 

融合视觉感知、自然语言理解和动作执行的多模态模型，使机器人或智能体

能够在复杂物理环境中完成人类指令驱动的任务。 
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一、背景和意义 

以习近平新时代中国特色社会主义思想为指导，全面贯彻落实党的二十大精

神，完整、准确、全面贯彻新发展理念，加快构建新发展格局，着力推动高质量

发展，促进人工智能赋能绿色制造产业，以制造模式的深度变革推动传统产业绿

色转型升级，推动制造业高端化、智能化、绿色化发展，形成绿色低碳的生产方

式和生活方式，为实现碳达峰、碳中和目标提供有力支撑，是新形势下的新思路。 

《国务院关于深入实施“人工智能+”行动的意见》（国发〔2025〕11 号）将

人工智能定位为“重塑人类生产生活范式，促进生产力革命性跃迁和生产关系深

层次变革”的核心引擎。人工智能从前沿技术上升为驱动中国式现代化的核心战

略。 

《新一代人工智能发展规划》（国发〔2017〕35 号）、《新一代人工智能治理

原则》、《新一代人工智能伦理规范》等文件的发布，指出了发展可信人工智能的

治理路径，实现人类福祉、安全公平、可解释、可问责、隐私保护。 

机器人 4.0 时代，将充分利用云-边-端计算提供更高性价比的多模态感知融

合、自适应交互和实时安全计算，实现规模化部署；具身智能机器人除了具有感

知能力实现智能协作，还具有理解和决策的能力，达到自主的服务；在某些不确

定的情况下，它需要呼叫远程的人进行增强或决策辅助；最终实现机器人即服务

（RaaS）的愿景。 

2021 年国务院《关于加快建立健全绿色低碳循环发展经济体系的指导意见》

（国发〔2021〕4 号）中提出，“建立健全绿色低碳循环发展的经济体系，使发展

建立在高效利用资源、严格保护生态环境、有效控制温室气体排放的基础上，确

保实现碳达峰、碳中和目标，推动我国绿色发展迈上新台阶”。在双碳目标的推

动下，我国新能源汽车产销量至今已经连续多年位居全球第一，而且，我国动力

电池产业链完整，全球 70%的产能在中国。但是，从全生命周期产业链的角度来

看，动力电池前端制造和后端回收利用的发展不均衡、不匹配，技术水平前高后

低，动力电池得不到规范处理将会造成严重的环境安全风险和战略性矿产金属资

源的“卡脖子”问题。 

作为锂离子动力电池的关键材料，钴资源在世界上的分布极不平衡，我国储
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量 8 万吨左右，仅占全球总储量的 1.14%，镍、锂等金属也非常稀缺，对外依存

度高达 90%以上。在我国缺钴少镍的资源背景下，新能源汽车产业的发展面临钴、

镍、锰、锂等战略性矿产金属资源匮乏的瓶颈，循环利用成为资源保供和绿色低

碳发展的重要措施。2024 年，我国新能源汽车保有量已突破 3140 万辆，累计退

役动力电池逾 80 万吨（约 100 GWh）。据测算，到 2030 年待回收的退役动力电

池将达 230 万—350 万吨，对应的回收利用市场规模将超过千亿元。 

3C 产品方面，手机具有较大的拆解回收再利用价值，以手机为例，根据测

算，在每 1 亿部废旧手机中，大约含有 1600 吨的铜、35 吨的银、3.4 吨的黄金、

1.5 吨的钯金。我国每年更新的手机数量约在 2~4 亿部，回收利用市场规模 60~70

亿元。退役 3C 产品的回收拆解一方面有利于高值电子元器件的再利用，另一方

面可以避免直接焚烧、填埋带来的环境污染。 

报废产品回收利用产业是绿色低碳循环发展的重要领域。由于人口结构、劳

动力转移、劳动力供需、工资调整等因素，我国低劳动力成本的比较优势发生了

根本性的转化，依靠人工为主的拆解方式将难以为继，因此，具有进一步创新生

产模式、提高生产效率、降低人力成本的迫切需求，解决弹性生产需求与刚性人

力结构之间的矛盾。借助人工智能、物联网、大数据、云计算等信息技术，未来

集约化、规模化的报废产品回收利用产业必然要从人工拆解、机械化拆解向自动

化、智能化拆解方式转变。拆解生产线系统的发展经历了从工业化流水线手工拆

解到精细化拆解线，亟待向柔性混流智能拆解转型升级！ 

拆解自动化是指报废产品拆解装备系统在无人或少量人的直接参与下，通过

自动检测、信息处理、分析判断、操纵控制，实现预期拆解目标的工业过程。相

比人工拆解，自动化能够代替长时间、重复性体力劳动，同时也能更好地应对危

险工作环境中的安全问题，在 3C 产品、动力电池、电动汽车的拆解中有广阔的

应用前景。然而，非结构化的拆解环境和拆解过程的不确定性一直是拆解自动化

面临的重大挑战。自动化拆解系统设计用于解决结构化环境中的固定对象的拆解

问题，无法处理复杂动态拆解场景下的多种类报废产品拆解的问题；工业机器人

也只适合在结构化工作环境下的固定工序替代，非结构化、高动态环境下多品种

小批量的精细化拆解，则无能为力。近年来，人工智能的飞速发展为解决不确定

性问题带来新的思路，可以适应复杂、精细、动态场景以及人机协作的智能拆解
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作业方式正成为本领域的研究前沿。 

拆解过程的不确定性 

报废产品在拆解过程中存在多种不确定性，这些不确定性可归纳为拆解对象

的复杂性、拆解目标的多样性和拆解深度的不确定性。 

（1）拆解对象的复杂性：不同品牌型号的同类产品在结构方面呈现的复杂

性，如主要结构、零部件数量和位置、几何约束、连接方式、连接类型、连接状

态等；同一品牌、同一型号产品在零部件配置、数量方面的不一致性。 

（2）拆解目标的多样性：源于市场对报废产品的零部件和材料具有多样化

的回收利用需求，使其拆解方法（保护性或破坏性拆解）、拆解成本、回收利用

价值、环境影响等方面具有不确定性。 

（3）拆解深度的不确定性：报废产品的品质状况、结构和材料方面的复杂

性使其拆解工艺规划具有不确定性。涉及拆解顺序规划、拆解作业规划、拆解作

业参数等方面的不确定性。 

拆解智能化的内涵 

拆解智能化是指，针对非结构化的拆解环境，通过对拆解对象的信息感知、

推理、学习，形成决策、规划、控制、监督命令流，以大量数据的自主化流动，

解决拆解过程的不确定性问题，实现高度自适应拆解。图 1 是拆解智能化的分

级。 

 

图 1 拆解智能化的分级——从 L0 到 L4 

智能拆解（L3、L4）区别于自动化拆解（L2）的特征在于： 

• 从依赖结构化数字模型到非结构化信息的感知、推理； 

• 从确切已知对象到多品类、未知场景的自适应； 
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• 从人的决策到智能体的自主决策； 

• 从基于模型的预先编程控制到基于知识的学习、交互、控制； 

• 从独立工作模式到基于云计算、云调度、云共享的协同模式。 

拆解智能化的行业需求和痛点 

拆解行业正加速“机器换人”，以摆脱枯燥、重复、高强度、高危险及噪声、

粉尘、异味、高温等恶劣环境。然而，环境适应性差、任务完成率低成新痛点，

亟需新一代人工智能框架升级；数据依赖、场景依赖倒逼企业在真实产线持续积

累操作数据；技术迭代飞快，亟待开放协同共享的技术创新模式；同时，开发部

署成本高企，必须通过商业模式创新分摊投入、共享收益，才能让智能拆解真正

落地。 

智能拆解系统 

智能拆解系统在非结构化的拆解环境中，通过对拆解对象的自主感知、拆解

知识的自主学习、拆解工艺的自主决策、拆解动作的自主控制、拆解生态的自主

协同，借助大量数据的自主流动，实现不确定性条件下复杂产品连接约束的高度

自适应解除。 

图 2 是一个知识驱动的柔性混流拆解系统示意图。柔性混流拆解系统由若干

独立的智能拆解工作站构成，基于数字孪生技术，通过云端化的拆解工艺智能决

策与规划系统、拆解物料信息管控与生产资源智能化调度系统，进行拆解流程的

动态决策、动态规划和柔性混流拆解系统的动态配置、动态优化，实现复杂动态

拆解场景下，结构和拆解工艺相似、多品种小批量报废产品的高效、柔性、绿色

拆解。 
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图 2 知识驱动的柔性混流拆解系统概念性框架 
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二、面向智能拆解的神经符号 AI 架构 

机器人控制技术正沿着显式模型、隐式模型和混合模式三条路径不断演进。

早期的显式模型控制，以高精度和稳定性广泛应用于工业自动化；随着机器人走

出工厂、面向更复杂的现实世界，神经网络驱动的隐式模型控制逐渐兴起，展现

出更强的适应能力。为同时满足精度、安全性与泛化能力，混合模式控制应运而

生。特别是近年来发展的神经符号具身智能，融合规则推理与深度学习的优势，

成为机器人控制智能化、自主化发展的重要方向。 

混合模式控制的目的在于融合显式模型和隐式模型控制的优势，以寻求在安

全性、稳定性、实时性、泛化性上的最优解。这种模式借鉴了丹尼尔 卡尼曼

（Daniel Kahneman）《思考，快与慢》关于系统 1 和系统 2 思维的概念。其中，

系统 1 是快速、直觉、并行的；而系统 2 则是缓慢、谨慎、顺序性的思维。目前

主要有两种混合模式： 

（1）System 1（神经网络）+System 2（神经网络）：这种模式是双系统理论

的直接体现，将“场景识别”和“动作控制”分别交给两个独立的神经网络来处理，

分别训练后再进行融合，类似大小脑的协同工作。它借鉴了脑科学的原理，从网

络结构设计入手，有效弥补了完全依赖“端到端”网络的不足——既能显著减少训

练所需的数据量，又能使动作网络更加轻量化，以满足实时性要求。此外，通过

两个网络之间的嵌入（embedding）操作，还能提升系统的可解释性。不过，这种

模式仍需大量数据进行训练，例如 VLM 与动作网络至少需要万亿级别的数据量。

同时，幻觉问题仍未解决，其在特定领域之外的泛化能力也较为有限。 

（2）System 1（预定义+神经网络）+System 2（符号+LLM）：该模式即神

经符号具身智能——基于对领域知识的深入理解，在系统 1 与系统 2 中进一步拆

分出神经谓词和动作原语，并通过动作原语组合完成任务。它不仅能最小化训练

所需的数据量，还能满足实时性要求，同时遵循可信规划标准 PDDL，确保了安

全性。然而，这种方法依然需要大量数据进行训练，且在特定领域外的泛化能力

仍有待提高。 
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2.1 神经符号 AI 架构 

面向智能拆解的神经符号 AI，通过融合符号逻辑系统的推理能力和神经网

络系统的感知、学习能力，形成感知、学习、决策、控制“知行合一”，训练与

推理“训推一体”的可信人工智能框架。 

 

图 3 神经符号 AI 架构 

如图 3 所示，神经符号 AI 架构从下到上分为 6 层，分别是硬件层、操作系

统与网络层、算法层、规划层、拆解工作站层与拆解产线层。①硬件层：涵盖支

撑智能拆解的相关硬件，包括用于计算的各种运算处理单元，例如 xPU（CPU，

GPU，NPU，神经拟态芯片），PLC 等，支撑操作的运动实体（机械臂，AGV 等）

和机械部分（例如，各种末端执行器）。②操作系统和网络层：负责解决通讯和

调度等功能，例如 ROS 系统、时间敏感网络（TSN）等，这些系统能够确保上层

的各个模块间高效的数据传递。③算法层：覆盖了常见的检测、分类、运动规划、

力控等算法。④规划层：考虑到规划部分是系统的核心，因此，该架构将规划部

分单独划分为一层。这一层借助可微的动力学模型、可微的滤波器等模块，将算

法层的模块有机的组合在一起，并封装成神经谓词和动作原语，然后，基于这些

原语进行符号层规划。符号层规划可以采用逻辑推理或者基于 transformer 的方

式完成。⑤拆解工作站层：在硬件、操作系统和网络、算法和规划层的支撑下，

架构就可以有效的支撑起各种不同能力的拆解工作站、进而形成拆解产线。⑥拆
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解产线层：在产线层上，通过数字孪生的实时物流仿真、实时混流调度、动态平

衡优化，实现拆解资源的智能动态配置与自适应平衡控制。除了上述 6 层，架构

中还包含了数据管理、知识管理、持续学习等跨越不同层次的模块，以便有效支

撑系统持续的进行自我升级和完善。 

2.2 基于神经符号 AI 的机器人可微分任务和运动规划框架 

如图 4 所示，可微分任务和运动规划（Differentiable Task & Motion Planning， 

𝜕TAMP）框架利用可微分的世界模型，包括可微分的运动学、动力学、逻辑和稳

固性模型，通过融合历史数据（经验）与知识，从而实现对任务完成方式的高准

确性猜测。𝜕TAMP 的工作原理类似于人类的直觉思维，其核心在于将运动学、

动力学、逻辑和稳固性检测等关键组件以可微分模块的形式融入神经网络之中。

这些可微分模块不仅作为网络的先验知识，而且在训练过程中直接对神经网络产

生约束作用，从而形成了神经网络所依赖的“直觉”。该设计思想使𝜕TAMP 能够

在无需额外运动学、动力学求解器、碰撞和稳固性仿真器的情况下，直接生成满

足运动学、动力学、碰撞和稳固性约束的采样点。此外，通过其他可微分运算操

作，我们将这些加入的可微模块与传统神经网络紧密相连，确保整个框架的计算

图连续且完整。这种无缝集成不仅可以提高计算效率，而且使得神经网络能够基

于其“直觉”进行高质量的猜测采样，从而提升机器人运动规划的效率和质量。 

 

图 4 基于神经符号 AI 的机器人可微分任务和运动规划框架 

当我们告诉𝜕TAMP 待拆解零件的目标位置时，它可以直接输出可信的机器

人操作点位、任务拆解序列和运动轨迹规划，类似于人类的直觉思维，机器人似

乎“知道”它想做什么、应该从哪里开始、如何一步一步地完成操作。与随机采样
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过程相比，𝜕TAMP 框架具有可微分、可解释、可扩展和持续学习的能力，机器

人任务和运动规划问题通过降低与随机采样目标点相关的时间和仿真计算资源

来实现，因此，能够高效完成非结构化、动态场景中的拆解任务和运动规划，支

持自主、敏捷、稳健拆解。 

2.3 基于神经符号 AI 的机器人具身智能控制架构 

如图 5，通过逻辑符号运算与神经网络深度融合，引入神经谓词，将视觉、

力觉信息和机器人位姿等连续空间状态映射到符号状态，自主选择并执行动作原

语，自主完成拆解任务，形成感知、学习、决策、控制“知行合一”，训练与推

理 “训推一体” ，可解释、可追溯“可信具身”的机器人具身智能控制架构，

赋予机器人像人一样的直觉思维（系统 1）和逻辑思维（系统 2）能力，支持动

态、非结构化拆解环境下的机器人实时拆解任务与运动规划。 

 

图 5 基于神经符号 AI 的机器人具身智能控制架构 

事先，我们需要将多模态的感知信息通过神经符号的方式抽象为神经谓词；

模仿人类的拆解动作，定义一系列独立的动作原语； 

机器人工作时，首先感知当前环境及目标状态，通过神经谓词生成动作原语
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序列并驱动机械臂执行； 

在执行过程中，机器人持续检查当前状态，如果与预期不一致将重新规划新

的动作原语序列； 

在完成拆解过程中将不断收集成功的正样本，进行持续学习。 

基于神经符号 AI 的机器人具身智能控制架构是一种基于拆解世界模型（神

经谓词+动作原语）的具身智能系统，既是认识论、又是方法论，通过其自主性、

可解释性、可学习性、可扩展性，实现“知行合一、训推一体、可信具身”的机器

人自主拆解。 

• 自主：系统能够根据现场实际情况进行推理，自主规划任务执行路径，

而非依赖预编程模式。这种自主性使其能够更好地适应环境变化，灵活

应对各种复杂场景。 

• 可信：推理过程赋予了系统明确的目标意识和行动逻辑，使其清楚地知

道自己要做什么以及为何而做。操作执行成功率(OES)与任务执行成功

率(TES)达到 100%。 

• 具身：系统内置的验证模块能够实时检测前期推理是否存在偏差。通过

与环境交互，机器人能够不断调整自身行为，实现具身学习，进一步提

升任务执行的准确性和适应性。 

• 敏捷：凭借具身学习的能力，机器人能够快速适应环境变化，并在熟悉

环境中实现快速、 灵活、高效地执行任务的工作表现，显著提升任务执

行效率。目标位置推测效率，SET>90%。 

2.4 神经符号具身智能更广阔的应用场景 

如图 6 所示，神经符号人工智能的演进可以划分为多个阶段：L2、L3.1、

L3.2……直至 L4。 

• L2（自动化阶段）：在这个阶段，整个系统依赖于专业人员的定制化设

计与编程。虽然系统能够实现特定任务，但其操作流程和控制逻辑完全

需要预设，缺乏灵活性。 

• L3（有条件智能化阶段）：在 L3 阶段，系统开始具备更高的自主性。通

过抽象出动作原语（用于执行任务的基本操作单元）和神经谓词（用于
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识别和检测当前环境或状态的神经网络模块），机器人可以基于感知的

状态自主规划动作序列。L3 阶段进一步细化为更多个子阶段，例如： 

➢ L3.1（LLM+预编程原语）：动作原语是由专家预先编程完成的，系

统能够基于感知数据自主选择并组合原语完成任务。 

➢ L3.2（LLM+可学习原语）：动作原语不再仅限于预编程，而是通过

强化学习、模仿学习等方法获得的，系统能够根据环境的变化不断

调整和优化动作，展现更强的适应能力。 

• L4（高度智能化）：L4 阶段标志着具身智能的全面进化，系统不再将感

知、决策、控制割裂开来，而是通过统一的大模型实现这三者的协同优

化。这个模型能够同时处理复杂的感知任务、动作规划和控制，并且具

备在复杂环境中快速适应和执行多任务的能力。 

 

图 6 神经符号具身智能的演进 

在各个智能化阶段中，持续学习和可靠性验证成为关键。 

• 持续学习：通过与环境交互，系统能够持续更新自身能力，优化已有模

块或获得新的能力，确保其适应不断变化的环境和任务需求。 

• 可靠性验证：保证机器人行为的可控性与可信性，确保在任务执行过程

中系统的安全和稳定。 

数据是推动神经符号具身智能发展的核心驱动力。尽管现实世界中存在海量

数据，但面向机器人领域的专用高质量数据却十分稀缺，获取难度也更大。因此，

必须在各个阶段的典型场景中，持续收集并有效利用来自机器人工作单元或其操
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作环境的数据，逐步构建完整的具身智能系统。这也正是推进神经符号具身智能

发展的唯一可行路径。 

目前，基于神经符号 AI 的具身智能技术大致处于 L3.1（LLM+预编程原语）

与 L3.2（LLM+可学习原语）之间。即，系统已经具备了利用语言模型（LLM）

进行复杂环境感知与任务规划的能力，同时借助专家预编程的动作原语自主适应

拆解环境。而且，正逐步向更高的自主学习方向迈进，即通过强化学习、模仿学

习等方式，实现具身智能系统能够自主生成、优化并适应不同场景的动作原语。

这一演进反映出从应对高精度、非结构化环境中的不确定性问题，到适应低精度、

垂直场景中定制化需求的技术转变。随着具身智能的进一步发展，行业将更好地

满足个性化需求，提升生产效率，优化服务质量，并为更多行业的生产力提升与

产业升级提供新动能。 
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三、路线图 2.0 的实施进展 

图 7—图 9 为基于神经符号 AI 的机器人拆解智能化技术路线图 2.0 的实施

进展情况，包括自主敏捷、可信具身控制技术支撑体系，机器人技术支撑体系和

信息物理系统技术支撑体系等三大技术体系展开的研究工作。通过研发动力电池

多机器人自主协作拆卸系统，实现有人监督下的动力电池机器人自主拆解作业，

保证较高的人工替代率，如图 10。该项目荣获“2025 英特尔人工智能创新应用

大赛”个人赛道特等奖。 

 

图 7 感知和决策关键技术的实施进展情况 

 

图 8 控制和学习关键技术的实施进展情况 
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图 9 机械执行本体和信息物理系统关键技术的实施进展情况 

 

图 10 动力电池多机器人自主协作拆卸系统 
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四、基于神经符号 AI 的机器人拆解智能化技术路线图 3.0 

图 11—图 14 为基于神经符号 AI 的机器人拆解智能化技术路线图 3.0。 

4.1 发展目标（3.0） 

以培育制造业“高科技、高效能、高质量”的新质生产力为核心导向，攻克

和掌握符合市场需求、实现机器人自主、敏捷、稳健拆解的神经符号具身智能技

术，构建自主可控技术体系和标准、专利、人才支撑体系，探索建立软硬件协同

创新生态，推动我国机器人拆解智能化共性基础技术和重大前沿技术的自主发展。 

4.2 基本策略 

一是，发展“知行合一、训推一体、可信具身”的机器人具身智能控制架构

和安全可控的拆解智能化技术支撑体系； 

二是，发展创新、协调、绿色、开放、共享的神经符号 AI 开源社区，探索

新型产学研用协同创新范式； 

三是，探索技术创新、应用示范、产业孵化无缝对接的成果转化新体制和新

机制，通过神经符号 AI 赋能绿色制造产业。 
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图 11 基于神经符号 AI 的机器人拆解智能化技术路线图 3.0 
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图 12 基于神经符号 AI 的机器人拆解智能化技术路线图 3.0——感知、决策 
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图 13 基于神经符号 AI 的机器人拆解智能化技术路线图 3.0——控制、学习 
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图 14 基于神经符号 AI 的机器人拆解智能化技术路线图 3.0——机械执行本体、信息物理系统 
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4.3 基于神经符号 AI 的机器人拆解智能化关键技术——感知 

4.3.1 退役动力电池（零部件）物体识别关键技术 

（1）基于 VLM 的物体识别技术：基于 BLIP-2、MiniGPT-4 等视觉语言模

型，利用图像和文本之间的联系实现物体的识别，能够有效地提高物体识别的准

确性和泛化能力，并且通过将视觉和语义信息融合在一起，为图像理解和应用提

供更深入的认知。 

（2）主动目标识别技术：机器人的相机或视觉传感器直接嵌入在机器人的

结构中，形成了所谓的“eye-in-arm”结构。机器人能够将视觉传感器与机械臂运

动紧密集成，利用机械臂的运动，可主动改变环境，让环境更利用识别，提高识

别或跟踪的准确性。 

（3）基于属性的标准件识别技术：一种通过属性分类来识别物体的方法，

通常在应用大型模型进行物体分割后实施。其优势在于，能够利用物体的属性信

息来辅助识别过程。通过属性分类，可以在物体的特征层面上实现更精细的识别，

而不仅仅局限于像素级别的分割结果。此外，它能够利用物体的属性信息来辅助

识别过程，从而极大地提高了数据的有效性。 

（4）基于推理的非标准件识别技术：通过利用物体之间的关系和上下文信

息，推断目标物体的类型。该技术无需事先采集和训练，能够通过推理过程识别

新型物体或非标准件，从而提高物体识别的泛化能力。 

（5）基于 VLM/LLM 的非标准件识别技术：当物体无法直接通过视觉进行

识别时，利用 VLM/LLM 将识别目标分解为对物体局部或全局特征的识别。识别

完成后，通过组合确定目标。 

综上所述，基于 VLM 和属性的物体识别构成了基础感知层，分别从语义和

特征层面理解物体，主动识别则通过主动改变视角来优化观测条件。面对未知或

复杂情况，基于推理的技术利用上下文关系结合领域知识进行逻辑推断，最终，

VLM/LLM 可作为一种综合求解器，分解并整合局部信息以识别复杂目标。这些

技术共同构建了一个从被动感知到主动认知、从处理标准件到应对非标准件的完

整技术体系。 
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4.3.2 神经谓词接地关键技术 

在传统的谓词逻辑中，谓词用于描述关系和属性，通常表示为真值函数。谓

词接地是指将抽象的谓词实例化为具体的、可操作的实体或对象的过程。在神经

符号人工智能中，使用神经网络来实现谓词接地的过程，即利用神经网络来将任

务规划系统中抽象谓词转变为真实情况的表征，使其能够在具体的环境中进行实

际的推理和判断。根据谓词的不同，又可以细分为：属性谓词接地技术、关系谓

词接地技术和基于推理的属性谓词接地。 

（1）属性谓词接地技术：通过分类网络或 VAE 对多模态数据（如 RGB、

深度、力、力矩、触觉等）进行分类，以确定系统所需的状态。 

（2）基于推理的属性谓词接地技术：当系统所需的物体间关系无法通过视

觉神经网络进行分类时，结合视觉分析出的信息与工业知识图谱，推理出物体间

的关系。 

（3）关系谓词接地技术：利用分类网络或 VAE 对多模态数据（如 RGB、

深度、力、力矩、触觉等）进行分类，以确定系统所需的物体间关系，包括支撑

关系、连接关系和空间关系。 

综上所述，属性与关系谓词接地作为基础，利用神经网络对多模态数据直接

分类，分别确定物体状态和物体间关系。当视觉等信息不足时，基于推理的属性

谓词接地则结合领域知识进行逻辑推断，弥补感知的局限。这些技术共同构建了

一个将感知信号可靠转换为抽象符号、实现符号状态与具体环境之间可操作表

征的完整技术体系。 

4.3.3 退役动力电池的零部件位姿估计关键技术 

（1）基于直觉的操作点位估计技术：借助神经网络与可微计算技术的优势，

该技术能够从海量操作经验中学习和捕捉知识与模式，并依据当前任务需求进行

操作点位的精准估计。 

（2）基于知识和推理的操作点位估计技术：利用领域知识和推理能力来确

定在哪些点位进行操作，能够完成特定的目标任务。 

综上所述，基于直觉的估计依赖神经网络从经验中学习，实现快速、精准的

位姿预测，适用于常规任务。基于知识与推理的估计则利用领域知识进行逻辑判

人
工
智
能
产
业
链
联
盟



 

24 

 

断，专攻复杂或特定的目标任务。这些技术共同构建了一个从数据驱动直觉到知

识驱动推理、兼具快速响应与复杂任务处理能力的完整技术体系。 

4.4 基于神经符号 AI 的机器人拆解智能化关键技术——决策 

4.4.1 拆解序列规划关键技术 

（1）拆解知识图谱的构建：从文本、图像和 CAD 模型等多种信息源中提取

并组织相关的拆解知识，建立一个结构化、关联的知识图谱。重点开展基于数据

检索增强生成（RAG-Anything）的拆解领域知识图谱研究，通过对端到端文本、

图像、表格、数学公式等多模态数据的统一处理，实现从文档解析、知识图谱自

动构建到拆解工艺智能检索生成的全流程自动化。 

（2）基于支撑关系的拆解序列推理技术：利用拆解知识图谱中的支撑和紧

固关系，通过推理方法来获得最优的拆解步骤，实现高效的拆解过程。 

（3）基于直觉的拆解序列推理技术：借助神经网络与可微计算技术，对拆

解工人和机器人的操作经验进行建模，从海量操作经验中学习和捕捉知识与模式，

并依据当前拆解场景需求，推断和预测最优拆解步骤。该技术尤其适用于存在变

形、损坏或不确定性的复杂场景。 

（4）人机协作拆解序列规划技术：通过对拆解流程及拆解工人行为的双重

建模，实现人机意图的协调与任务的有效分工。此技术显著提升拆解任务的效率

与准确性，同时降低人机间的冲突与误操作。通过优化人机协作，可推动拆解自

动化与智能化迈向更高水平。 

综上所述，知识图谱构建提供了结构化的领域知识基础；基于支撑关系的推

理利用图谱进行逻辑推导，确保步骤合理性；基于直觉的推理则借助神经网络处

理复杂不确定场景。最后，人机协作规划实现了任务层面的智能分工与协调。这

些技术共同构建了一个融合知识驱动与数据驱动、兼顾确定规则与不确定场景处

理能力的完整技术体系。 

4.4.2 任务规划关键技术 

（1）基于 LLM/VLM 的任务规划技术：LLM/VLM 的任务规划技术能够将

自然语言、视觉语言问题转化为任务规划指导，同时引入执行阶段的验证机制，

人
工
智
能
产
业
链
联
盟



 

25 

 

确保规划结果的准确性和可靠性。其优势在于灵活性与适应性，能够应对多样化

的任务规划需求。具体实现路径包括： 

• 基于通用 LLM 的任务规划技术：通过 Prompt 设计与长期记忆（long 

term memory），结合 CoT（chain of thought）或 TOT（Tree of Thought）

技术，以及 agent 等技术，引导通用 LLM 完成机器人任务规划。 

• 基于专用 LLM 的任务规划技术：训练专门用于 Edge 端部署的任务规

划 LLM，以满足在资源有限的边缘设备上进行实时任务规划的需求。 

• 基于 VLM 的任务规划技术：通过利用先验的场景经验与 VLM 相结合，

生成新的神经谓词和动作原语，迭代改进任务执行策略，提高规划效率

和适应性。 

（2）人机协作任务规划技术：基于工人行为模型与任务要求，进行任务分

配与调度，明确工人和机器人在任务执行中的角色与责任。该技术能够建模并理

解工人行为，将机器人视为工人的协作伙伴，通过实时交互与协同决策，共同完

成任务，提升整体工作效率与质量。 

（3）多机协作任务规划技术：统一协调流水线中的物料情况、机器人与工

人的状态与能力，并进行任务调度，以实现高效的多机器与机器人、机器人与工

人的协同工作。 

综上所述，基于 LLM/VLM 的规划构成核心规划层，通过通用、专用模型

及视觉语言融合，将指令转化为可执行规划。人机协作规划在此基础上实现任务

层面的智能分工与协调，而多机协作规划进一步扩展至系统层面，实现资源与进

度的全局优化。这些技术共同构建了一个从单机智能到群体协作、从指令解析到

系统优化的完整技术体系。 

4.4.3 运动规划关键技术 

（1）基于机器人运动学信息神经网络的运动规划技术：通过高效稳健的“端

到端”机器人构型预测模型，如 RobKiNet，显著提升机器人构型参数的采样效

率和优化速度，提高操作的敏捷性。 

（2）基于多模态信息的运动规划：在 RobKiNet 的基础上，引入更多传感信

息，基于这些模态信息构建更可靠安全的运动规划。 
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（3）多单元协作运动规划技术：一种让多个可运动单元（如底盘，双臂等）

在同一个空间中协同运动的技术。通过在统一的时种下对系统进行控制，协调速

度，调整位置，从而让机器人各个单元协作完成更为复杂的任务，如抱起，撕扯，

撬开等。 

（4）多机协作运动规划技术：是一种让多个机器人或者智能体在同一个空

间中协同运动的技术。它的任务是在保证每个机器人或者智能体的安全和效率的

前提下，为它们分配合适的运动轨迹和时间表，从而避免运动中的冲突和延迟。

它通过使用一些算法来统一时序，协调速度，调整位置，以及解决冲突等问题。 

综上所述，基于运动学神经网络的规划构成了高效敏捷的底层基础；多模态

信息规划通过融合感知数据增强了规划的安全性与可靠性；多单元协作规划实现

了机器人内部各执行器的协调控制；多机协作规划则进一步在系统层面解决冲突

与协同问题。这些技术共同构建了一个从单机敏捷控制到多机协同避障、从内部

协调到系统优化的完整技术体系。 

4.5 基于神经符号 AI 的机器人拆解智能化关键技术——控制 

4.5.1 机器人执行关键技术 

（1）多机、多传感同步技术：一种让多个系统或者设备之间实现数据同步

的技术。它的任务是在不同的系统或者设备之间传输数据时，保证数据的一致性

和准确性，从而避免数据的丢失和错误。它通过使用一些协议和算法来校准时间，

匹配格式，检验数据，以及解决冲突等问题。 

（2）多机、多传感融合技术：一种利用多个系统或者设备的不同传感器来

获取更全面和更准确的信息的技术。它的任务是在不同的工作阶段，根据不同的

目标和需求，选择合适的传感器来采集数据，并将数据进行整合和分析，从而提

高数据的质量和效用。它通过使用一些方法和模型来评估传感器的性能，优化传

感器的配置，融合传感器的数据，以及解决不确定性等问题。 

（3）动作可行性实时检测技术：检测机器人在执行每个动作时的可行性，

如果不可行则及时调整和反馈，确保动作的正确执行。 

（4）实时安全性保障技术：实时检测工作环境中的人员状态和设备电量状

态，一旦发现异常可以第一时间采取应急措施，确保工作安全。 
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（5）实时异常处理技术：当异常发生时，停止系统是简单粗暴的解决方案，

更合理的方案是，当异常发生时，找到对人员和系统影响最小的处理方案，并迅

速执行。 

（6）工人安全生产保障技术：实时监控工人的操作流程，确保工人的操作

符合规范，保证工人的安全生产。 

（7）协作信息发布系统：人与机器之间用于信息协调和发布的终端系统。

机器可以通过该系统实时地将信息发布给人，人也可以通过该系统发送指令给机

器。 

综上所述，多机、多传感同步与融合技术是基础，确保了系统感知数据的一

致性与全面性。动作可行性检测在此基础上对执行过程进行实时校验。实时安全

与异常处理技术则构成了核心保障层，分别针对人员设备安全和突发异常进行主

动防护与最小化干预。工人安全生产保障与协作信息发布系统最终实现了人机协

作环境下的双向交互与流程规范。这些技术共同构建了一个从数据同步到人机交

互、从动作校验到系统容错的完整技术体系。 

4.5.2 机器人执行有效性验证关键技术 

（1）基于规则的可靠性检测技术：根据预设的规则来检测流程或系统的可

靠性，这些规则是可以定制的。 

（2）知识图谱的维护：持续检验和更新知识图谱中的知识，确保知识图谱

中的知识是最新的和正确的。 

（3）LLM/VLM & KG 可靠性检测技术：依靠 LLM/VLM 来检测流程或系

统的可靠性，检查过程需要融合 LLM 中的常识推理与知识图谱中的工业背景知

识。 

（4）可微物理引擎：数字孪生系统中用于物理模拟的引擎，它可以根据实

际情况自动调整相关参数，以最大限度地确保虚拟现实与真实世界的一致性。 

（5）基于仿真的可靠性检测技术：在数字孪生系统中，通过提前对任务进

行仿真运算，以检测任务的可行性与安全性。借助仿真先行策略，可有效规避在

实际执行任务时可能出现的问题。 

综上所述，基于规则的检测与知识图谱维护构成了基础验证层，确保流程合
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规与知识更新及时、准确。LLM/VLM 与 KG 融合检测进一步引入常识推理，提

升复杂情境下的判断力。可微物理引擎与基于仿真的检测则通过高保真模拟，在

虚拟空间中预先验证任务可行性与安全性，实现从静态规则到动态模拟的跨越。

这些技术共同构建了一个从静态规则到动态仿真、从知识驱动到数据驱动的完整

技术体系。 

4.6 基于神经符号 AI 的机器人拆解智能化关键技术——学习 

（1）多模态数据存取和管理技术：能够存储和管理不同类型的数据，如图

像、深度、力、力矩、触觉等。通过有效的数据整理与索引，实现高效的数据存

取和管理。 

（2）谓词的持续学习：在系统操作过程中，利用可微调整技术持续学习谓

词，使谓词可以根据环境和情况的变化进行调整，达到最佳效果。例如，机器人

在执行任务过程中，可以根据反馈持续调整运动控制相关的谓词。 

（3）原语的自学习：通过模拟人工操作的方式，系统可以自动生成执行任

务所需要的原语及其对应的定义，实现对原语的自学习。 

（4）原语的组合：系统可以根据需要，将现有原语进行重新组合，生成新

的高效原语。在组合过程中，要确保组合后的原语可以无缝衔接，组合效果最佳。 

（5）VLA（视觉-语言-行为）对齐技术：在学习过程中，通过将视觉、语言

与机器人的行为进行精准对齐，使机器人能够准确理解并执行自然语言的描述，

从而顺利完成控制任务，大幅降低人工干预的需求。 

（6）主动学习技术：系统可以主动选择最有益的未标注数据让人工进行标

注，以最大限度地减少需要标注的数据量。 

（7）感知模块持续学习技术：利用多模态数据验证与执行结果的反向分析，

实现对机器人各感知模块的无监督或半监督持续学习。通过多方数据，持续修正

并提升感知模块的性能。 

（8）元学习技术：系统能够自主学习并判断在不同环境、任务等情况下，

哪些传感器、模块的输出结果更为准确可靠，并据此进行校准与选择，从而实现

感知技术的自适应与智能选择。 

综上所述，多模态数据管理是学习的基础，为所有上层技术提供数据支撑。
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谓词与原语的自学习与组合构成了技能层，使机器人能自主进化基本能力。视觉

-语言-行为对齐实现了高级指令理解与执行。而主动学习、感知模块持续学习与

元学习则形成了系统的自我进化机制，通过选择性标注、多模态验证和智能校准

实现持续优化。这些技术共同构建了一个从数据管理到自主进化、从技能学习到

系统自适应的完整技术体系。 

4.7 基于神经符号 AI 的机器人拆解智能化关键技术——执行本体与

CPS 

4.7.1 通用型拆解末端执行器设计关键技术 

（1）末端执行器设计方法：即连即用的、通用型拆解末端执行器的设计方

法。要求末端执行器对于通用作业任务，如拆卸螺栓等，可以通过与机械臂末端

法兰匹配的快速更换机构，完成安装并执行操作，对于机械臂的品牌和类型规格

没有额外要求，只需匹配机械臂末端法兰盘规格参数即可。 

（2）非破坏性连接拆解末端执行器设计：针对螺钉、螺栓等标准紧固件，

工业接插件、连接器，在保证零部件结构完整和正常连接情况下，实现非破坏性

拆卸。 

（3）破坏性连接拆解末端执行器设计：实现卡扣连接、粘接、焊接等不可

拆卸性连接的分离。对于非标准连接的零部件，以及标准零部件的非正常连接，

如锈蚀或者螺纹损坏等，使用该末端执行器完成诸如铣削、剪切、切割等破坏性

拆解。 

（4）零件拆解末端执行器设计：实现刚性、柔性、软体零件的拆解。末端

执行器的拆解对象要适配多种类型的零部件，如刚性螺栓、柔性卡扣和软体线缆

等，覆盖退役产品所有零部件。 

综上所述，通用型拆解末端执行器解耦设计方法是核心基础，确保执行器与

各类机械臂的即插即用。在此基础上，针对不同连接特性：非破坏性连接的末端

执行器精准拆卸标准紧固件以保护零件；破坏性连接的末端执行器则通过切割、

铣削等方式分离不可拆连接；而面向零件的末端执行器进一步扩展能力，覆盖刚

性、柔性等各类零部件。这些技术共同构建了一个从通用适配到专用操作、从无
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损拆解到破坏分离的完整技术体系。 

4.7.2 机器人系统关键技术 

（1）多功能（臂）复合机器人：机械本体由至少两个甚至更多机械臂构成，

针对单一机械臂难以完成的工作任务，通过多机械臂协同作业技术，实现多机器

人间拆解作业任务的协调、灵活、稳健配置，同时，可与人类安全、高效地协同

工作。通过融合人类独有的适应变化能力与机器人不知疲倦地完成精密、重复性

任务的耐力，便能在同一条生产线上拆解多种类型的产品。 

（2）传感器系统：视觉传感器、力觉传感器、视触觉传感器、激光传感器、

声光电传感器等。对于机器人拆解智能系统的感知功能要求系统实现多传感器融

合和数据采集，为神经符号 AI 框架和 CPS 实施提供数据支撑。 

（3）域控制器：融合多个独立控制器，实现区域性控制功能。原本控制器

间的信息传递转变为域控制器内的信息传递，显著缩短信号周期，提升控制精度。 

（4）多机械人系统：通过位姿协同和作业协同技术，实现多机器人之间拆

解作业任务的协调、灵活、稳健配置。鉴于单体机械臂工作空间有限，对于大型

退役产品，例如动力电池包内零部件的拆解，需多台机械臂协作完成，从而提升

智能拆解系统的灵活性和负载能力。基于数字孪生系统，并面向拆解对象和任务

需求，灵活配置不同工位机器人类型，增强人机协作能力，实现柔性混流智能拆

解。 

（5）刚-柔-软零件的机器人自主拆解工作站：实现对刚性、柔性及软体零件

的拆解。依托即连即用的通用型拆解末端执行器，通过快速更换装置，实现对各

类零件的智能化拆解。 

综上所述，多功能复合机器人与多机器人系统构成了执行层，通过多臂与多

机协同，灵活应对复杂任务与大型工件。传感器系统与域控制器则构成了感知与

控制中枢，前者通过多模态融合提供环境认知，后者通过集成计算提升响应精度。

刚-柔-软零件自主拆解工作站依托通用末端执行器，最终实现了对多样化零部件

的精准操作。这些技术共同构建了一个从单体作业到群体协同、从感知控制到精

准执行的完整技术体系。 

人
工
智
能
产
业
链
联
盟



 

31 

 

4.7.3 退役动力电池拆解的信息物理系统关键技术 

（1）数字孪生技术：构建拆解过程信息感知与控制交互系统架构，以及数

字孪生体与物理拆解系统的虚实映射交互控制、资源调度关联驱动、拆解任务协

调分解机制。通过拆解系统的实时物流仿真、实时混流调度、动态平衡优化，实

现拆解资源的智能动态配置与自适应平衡控制。 

• 数据驱动的实时仿真优化技术：建立层次化数字孪生结构模型和数据交

互模型，通过可视化实时仿真系统，实现数据驱动的拆解系统实时物流

仿真优化。 

• 拆解资源的动态规划与实时混流调度技术：建立并行拆解工作站异步混

流调度模型，通过柔性混流拆解系统异步混流平衡与周期调度优化，实

现拆解资源的动态配置与自适应平衡控制；通过“云-边-端”的集成融合

与协调协同机制，开发拆解流程智能决策与拆解任务动态规划、拆解资

源实时调度系统，实现拆解流程智能决策、拆解物料动态管控、拆解资

源实时调度。 

• 数据管理系统与数据可视化，系统故障监测技术：实现数字化产线的数

据监测和故障预测功能，实时查看产线生产过程数据和运行状态，及时

预警产线潜在故障，提高产线效率。 

（2）远程操作技术：人类远程实时操控机器人，将人类的感知、决策与机

器人的执行合为一体，在危险或难达环境中实现精准“人在回路”控制。例如，

云端监控多条产线时，若某机器人工作站突发故障，操作员可立即远程接管，人

工干预排除异常。此外，远程操作系统通过构建逼真交互场景，支持动捕学习人

类动作，具备高精度跟随、实时力反馈、安全易用等特点。 

（3）低时延远程通讯：在远程操作过程中，云端和作业现场数据和图像等

信息通过网络传输不可避免的会产生时延，这些时延累加起来就会给操作人员带

来明显的动作不同步问题，过大的时延对远程要操作的可靠性和有效性带来巨大

挑战，低时延对于远程操作技术至关重要。通常低时延技术采用以下策略：有线

连接、优化网络配置、减少网络拥塞、利用 CDN (Content Delivery Network，内

容分发网络) 技术、实现缓存、优化协议效率、使用 QoS (Quality of Service) 技

术、优化应用程序设计、部署边缘计算、监控和分析性能等。 

人
工
智
能
产
业
链
联
盟



 

32 

 

（4）多视角立体视觉图像：在操作人员远程操作现场设备时，通常依赖于

分布在各方位视觉传感器传输的图像进行观察。然而，单一视角图像往往不足以

支持操作人员的决策和有效操作。通过多视角立体视觉图像技术，从多个已知相

机姿态的图像中对工业现场场景进行三维重建，使操作人员的作业更加直观和可

靠。 

（5）可微物理引擎技术：实现对刚体、柔性和软体零件的精确模拟与仿真。

在数字孪生系统的物理引擎仿真环境中，通过梯度优化算法，结合实际环境数据

的反馈，自动调节相关仿真参数，以最大限度地确保仿真引擎运行与实际运行结

果的高度一致性。 

（6）人机协同的智能化柔性拆解产线技术：开展退役产品（动力电池）零

部件的识别与拆解工艺自动生成、汇流条/线束/电池模组支架/热管系统的机器人

自主拆解、电池模组的机器人自主吊升/转移/放置等工艺装备的示范验证。 

综上所述，数字孪生是 CPS 的核心信息基础，构建了虚实映射与交互控制

的框架。实时仿真优化与动态混流调度技术在此框架内实现数据驱动的资源动态

配置与产线平衡；数据管理与故障监测则最终确保系统状态透明与稳定运行。 

拆解产线是 CPS 的物理基础，构建了从远程干预到自主执行的闭环作业能

力。远程操作与低时延通讯构成远程精准控制的基础，确保人类专家能实时介入；

多视角立体视觉提供全景环境感知，为决策提供支持；可微物理引擎通过高保真

仿真预演，保障操作可行性；最终，智能化柔性产线集成上述能力，实现自主拆

解工艺的落地验证。这些技术共同构建了一个从虚拟映射到实时管控、从系统仿

真到实体作业的完整技术体系。 

  

人
工
智
能
产
业
链
联
盟



 

33 

 

4.8 保障措施 

一是，建立创新、协调、绿色、开放、共享的神经符号 AI 开源社区，组织

开展共性基础技术和前沿技术研究，推动基于神经符号具身智能的机器人拆解智

能化技术创新体系建设，探索技术成果转化新机制以及向全行业扩散和转移的新

途径。 

二是，实施标准、专利、人才战略，完善相关标准体系建设，规范拆解智能

化中的信息感知、自主控制、系统协同、检测维护、过程优化等方面技术要求；

培养吸引高层次创新人才，同时，加强技术培训基地建设，培养高级专门技术人

才。 

三是，加强开展相关产业政策研究，拓宽多元化投融资渠道，推动相关价值

链上各利益相关方的共同参与，提高绿色制造产业的智能化水平和科技创新能力。 
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